

Friday 23 June 2017 – Morning

A2 GCE MATHEMATICS

4724/01 Core Mathematics 4

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4724/01
- List of Formulae (MF1)

Duration: 1 hour 30 minutes

Other materials required:

Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the barcodes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Answer all the questions.

- 1 (i) Find the first three terms in ascending powers of x in the binomial expansion of $\sqrt[4]{1+8x}$. [3]
 - (ii) State the range of values for which this expansion is valid. [1]
- 2 The equations of two lines are

$$\mathbf{r} = \begin{pmatrix} 3\\0\\2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\3 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} -1\\8\\2 \end{pmatrix} + \mu \begin{pmatrix} -3\\1\\-5 \end{pmatrix}$$

[4]

Find the coordinates of the point where these lines intersect.

3 Show that
$$\int_{0}^{1} 16xe^{4x} dx = 3e^{4} + 1.$$
 [5]

4 Express
$$\frac{9x^2 + 43x + 8}{(3+x)(1-x)(2x+1)}$$
 in partial fractions. [5]

- 5 (i) Find the quotient and the remainder when $6x^4 + 12x^3 3x^2 11x 2$ is divided by $2x^2 + 4x + 1$. [3]
 - (ii) Hence show that $\int_{0}^{3} \frac{6x^{4} + 12x^{3} 3x^{2} 11x 2}{2x^{2} + 4x + 1} dx = A + B \ln C$, where A, B and C are constants to be found. [3]
- 6 The equation of a curve is $4\sqrt{y} + x^2y 8 = 0$. The curve meets the line y = 1 at two points. Find the gradient of the curve at each of these points. [7]
- 7 The surface of a pond is covered by water lilies. The area of water lilies is denoted by $A \text{ m}^2$. At t = 0, A = 10 and $\frac{dA}{dt} = 0.48$. It is thought that eventually the lilies will cover the whole of the surface area of the pond. A biologist proposes that this situation is modelled by the differential equation

$$\left(\frac{1}{A} + \frac{1}{250 - A}\right)\frac{\mathrm{d}A}{\mathrm{d}t} = k$$

where *t* is the time in days and *k* is a constant.

(i)	Solve this differential equation to express A in terms of t and k .	[6]

- (ii) Find the value of k. [1]
- (iii) Assuming the model is reliable, find the surface area of the pond. [1]

8 (i) Given that
$$y = \ln\left(\frac{1+\sin 4x}{\cos 4x}\right)$$
, show that $\frac{dy}{dx} = \frac{4}{\cos 4x}$. [4]

(ii) Find
$$\int \left(\frac{\cos 2x}{\cos 2x + \sin 2x} + \frac{\sin 2x}{\cos 2x - \sin 2x} \right) dx.$$
 [4]

9 Use the substitution
$$u = 1 + \ln x + x$$
 to find $\int \frac{3(x+1)(1-\ln x-x)}{x(1+\ln x+x)} dx$. [6]

10 (i) Write down a vector equation of the line through the points A (5, 1, 9) and B (8, 7, 15).[1]P is the point (11, -2, 15).

- (ii) Show that triangle *APB* is isosceles and find angle *PAB*. [4]
- The point *D* lies on the line through *A* and *B*. Angle PAD = angle PDA.
- (iii) Find the coordinates of *D*. [4]
- 11 The parametric equations of a curve are

$$x = \frac{1}{\sqrt{2+t}}$$
 and $y = t^3 - 3t$ for $-2 < t \le 0$.

(i) Find
$$\frac{dy}{dx}$$
 in terms of t.[3](ii) Find the coordinates of the stationary point on the curve and determine its nature.[4](iii) State the range of values of x and the range of values of y.[2]

[1]

(iv) Sketch the curve.

END OF QUESTION PAPER

Qu	estio	n Answer	Marks	Gu	idance
1	i	$1 + 2x$ $\left(\frac{1}{4}\right) \times \left(-\frac{3}{4}\right) \times \frac{\left(8x\right)^2}{2!} \text{ oe soi}$	B1 M1	allow bracket error	if M0 allow SC1 for $1+4x-8x^2$
		$1 + 2x - 6x^2 \text{cao}$	A1		ignore extra terms
	••		[3]		
1	11	valid for $ x < \frac{1}{8}$ oe	B 1		
			[1]		
2		Any two from			
		$3 + \lambda = -1 - 3\mu$ $\lambda = 8 + \mu$ $2 + 3\lambda = 2 - 5\mu$	B1	may be in vector form	
		solve simultaneously to obtain a value of λ or μ	M1		
		$\lambda = 5 \text{ or } \mu = -3$	A1		
		(8, 5, 17) isw	A1	allow vector form	
			[4]		

4724

Qu	estior	Answer	Marks	Guidance		
3		$\frac{1}{4}e^{4x}$ soi	B1	from integration		
		$[16]x \times \frac{1}{4}e^{4x} - \int [16] \times \frac{1}{4}e^{4x} dx \text{ oe}$	M1*	allow sign errors only	ignore limits at this stage	
		$\mathbf{F}[x] = \left[4x\mathbf{e}^{4x} - \mathbf{e}^{4x}\right]$	A1			
		F[1] – F[0]	M1dep*	allow bracket errors, but substitution of limits must be shown	NB double negative may be implied by plus sign	
		$=3e^4+1$ NB AG	A1 [5]	convincing intermediate step needed eg $4e^4 - e^4 - (0 - e^0)$	no recovery from bracket errors for this mark	
4		$\frac{A}{3+x} + \frac{B}{1-x} + \frac{C}{2x+1}$	B1	if not seen here, may be awarded at end		
		$\begin{bmatrix} 9x^2 + 43x + 8 \equiv \\ A(1-x)(2x+1) + B(3+x)(2x+1) + C(3+x)(1-x) \\ \text{soi} \end{bmatrix}$	M1	allow sign errors only		
		A = 2 B = 5 C = -3 is w	A1 A1 A1	$\frac{2}{3+x} + \frac{5}{1-x} - \frac{3}{2x+1}$		
		15 YY	[5]			

Qu	estio	n	Answer	Marks	Gı	iidance
5	i		$3x^2$ seen in quotient and $\pm 6x^2$ seen as leading term in division	M1	if M0 , B2 for quotient and B1 for remainder	
			quotient is $3x^2 - 3$	A1		the quotient and the remainder may be left embedded; but mark the final
			remainder is $x + 1$	A1		answer
				[3]		
5	ii		$\int \left(3x^2 - 3 + \frac{x+1}{2x^2 + 4x + 1} \right) dx$	M1FT	their quadratic quotient and their linear remainder	
			$x^{3} - 3x + \frac{1}{4}\ln(2x^{2} + 4x + 1)$ cao	A1		
			$18 + \frac{1}{4} \ln 31$ cao	A1		
				[3]		

4724

Question	Answer	Marks	Gu	idance
6	$Ay^{-\frac{1}{2}} \times \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	A is a constant	
	$Bxy + x^{2} \frac{dy}{dx}$	M1	<i>B</i> is a constant	NB $\frac{-2xy}{x^2+2y^{-\frac{1}{2}}}$
	$4 \times \frac{1}{2} y^{-/2} \times \frac{4y}{dx} + 2xy + x^2 \frac{4y}{dx} = 0$	AI		x + 2y
	$x = \pm 2$	B1	both values	from $4\sqrt{1} + x^2 \times 1 - 8 = 0$
	substitution of (<i>their</i> 2, 1) <i>or</i> (<i>their</i> –2, 1) following differentiation	M1	may follow incorrect rearrangement	
	at (2, 1) $m = -\frac{2}{3}$	A1		association between point and gradient may be evidenced by substitution
	at $(-2, 1)$ $m = \frac{2}{3}$	A1		
	Alternatively, marks for differentiation may be awarded as follows	[7]		
	$2x \frac{\mathrm{d}x}{\mathrm{d}y}$	B1		
	$2x\frac{\mathrm{d}x}{\mathrm{d}y}y + x^2 \times 1$	M1	use of Product Rule	
	$2x\frac{dx}{dy}y + x^{2} + 2y^{-\frac{1}{2}} = 0]$	A1		

Mark Scheme

Question		Answer	Marks	Guidance		
7	i	$\ln A - \ln(250 - A) = kt \ (+ c)$	M1*	allow sign error		
		valid substitution of $t = 0$ and $A = 10$ to find c	M1dep*	$\mathbf{NB}\ln 10 - \ln 240 = 0 + c$		
		$c = -\ln 24$ oe	A1	allow to 3 sf or more	- 3.17805383	
		constructive log step	A1	eg $\ln\left(\frac{A}{250-A}\right) = kt - \ln 24$ oe	or $\ln\left(\frac{A}{250-A}\right) = kt - 3.178$	
		taking exponentials correctly of both sides; FT their rearrangement and/or <i>their</i> numerical <i>c</i>	M1dep*	$\operatorname{eg}\left(\frac{24A}{250-A}\right) = e^{kt}$	$\operatorname{or}\left(\frac{A}{250-A}\right) = e^{kt-3.178}$	
		$[A] = \frac{250e^{kt}}{24 + e^{kt}} \text{ oe}$	A1			
		Alternatively				
		$\ln A - \ln(250 - A) = kt \ (+ c)$	M1*	allow sign error $\begin{pmatrix} A \end{pmatrix}$		
		constructive log step, may be awarded after taking exponentials	A1	$\operatorname{eg} \ln\left(\frac{A}{250-A}\right) = kt + c$		
		taking exponentials correctly of both sides; FT their rearrangement	M1dep*	$\operatorname{eg} \frac{A}{250 - A} = \operatorname{e}^{kt + c}$		
		valid substitution of $t = 0$ and $A = 10$ to find c	M1dep*	eg $\frac{10}{250-10} = e^{0+c}$		
		$\frac{A}{250-A} = \mathrm{e}^{kt-\ln 24} \mathrm{oe}$	A1			
		$[A] = \frac{250e^{kt}}{24 + e^{kt}} \text{ oe}$	A1			
			[6]			

Question		n	Answer	Marks	Gu	idance
7	ii		<i>k</i> = 0.05	B 1		
				[1]		
7	iii		$A = 250 \ [m^2]$	B1 [1]	ignore commentary	
8	i		$\frac{\cos 4x \times 4\cos 4x - (1 + \sin 4x) \times -4\sin 4x}{\cos^2 4x}$	M1	quotient rule; allow sign errors and/or one coefficient error	
			$\frac{4\cos^2 4x + 4\sin^2 4x + 4\sin 4x}{\cos^2 4x} $ oe	A1		
			$\frac{\cos 4x}{1+\sin 4x} \times their \frac{4(1+\sin 4x)}{\cos^2 4x}$	M1	use of chain rule; may be unsimplified	
			$=\frac{4}{\cos 4x}$ NB AG	A1		
		$\frac{4\cos 4x}{1+\sin 4x} - \frac{-4\sin 4x}{\cos 4x}$ $4\cos 4x \times \cos 4x + 4\sin 4x(1+\sin 4x)$	M1	chain rule; allow sign errors and/or one error in coefficient of $\cos 4x$ or $\sin 4x$	or use of product rule with $(1+\sin 4x)$ and $(\cos 4x)^{-1}$ or $\sec 4x$ $(1+\sin 4x) \times -1(\cos 4x)^{-2} \times -4\sin 4x$	
			$\frac{1}{(1+\sin 4x)\cos 4x}$	A1	FT <i>their</i> chain rule	$+\frac{4\cos 4x}{\cos 4x}$
			$\frac{cg}{(1+\sin 4x)\cos 4x}$ $\frac{4}{\cos 4x}$	A1		

Question		Answer	Marks	Guidance		
		$\frac{Alternatively}{\sec 4x + \tan 4x} \times \left(4\sec 4x \tan 4x + 4\sec^2 4x\right)$	M1	allow sign errors and/or one coefficient error		
		$\frac{4\sec 4x(\tan 4x + \sec 4x)}{\sec 4x + \tan 4x}$	M1	factorising – allow one coefficient slip		
		$4\sec 4x$	A1			
		$\frac{4}{\cos 4x}$	A1			
			[4]			
8	ii	$\frac{\cos 2x(\cos 2x - \sin 2x) + \sin 2x(\cos 2x + \sin 2x)}{(\cos 2x + \sin 2x)(\cos 2x - \sin 2x)}$ oe	M1	combine into a single fraction; allow sign errors	allow equivalent form with double angle formulae allow equivalent separate fractions	
		$\frac{\cos^2 2x - \cos 2x \sin 2x + \sin 2x \cos 2x + \sin^2 2x}{\left(\cos^2 2x - \sin^2 2x\right)}$	A1	or better	with correct common denominator	
		$\frac{1}{\cos 4x}$	A1			
		$\frac{1}{4}\ln\left(\frac{1+\sin 4x}{\cos 4x}\right) + c \text{ oe}$	A1	NB $\frac{1}{4}\ln(\sec 4x + \tan 4x) + c$		
		$eg \frac{1}{4} ln (1 + sin 4x) + \frac{1}{4} ln sec 4x + c$	[4]			

4724

Question		Answer	Marks	Guidance		
9		$\frac{\mathrm{d}u}{\mathrm{d}x} = 1 + \frac{1}{x}$	B1			
		$x + \ln x = \pm u \pm 1$ oe substituted into the numerator	M1*	allow slip in substitution		
		dx replaced by their $\left(\frac{1}{\frac{1}{x}+1}\right)$ [du] in integrand oe	M1*			
		$\int \left(\frac{3(1-(u-1))}{u}\right) [du] \text{ oe}$	A1	may be simplified	$\int \left(\frac{6}{u} - 3\right) du$	
		$A\ln u + Bu (+ c)$	M1dep*	following $\int \left(\frac{A}{u} + B\right) du$		
		$6\ln(1 + \ln x + x) - 3(1 + \ln x + x) + c$ oe isw	A1		if du and/or \int and/or $+ c$ not seen at some stage, withhold the final A1	
			[6]			
10	i	$r = \begin{pmatrix} 5 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 6 \end{pmatrix} \text{ oe isw}$	B1	$\begin{pmatrix} 8 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$	B0 for just the RHS, must see " $r =$ " oe	
		(9) (6)	[1]	NB eg $r = \begin{bmatrix} 7 \\ 15 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 2 \end{bmatrix}$		
10	ii	$6 \times 3 - 3 \times 6 + 6 \times 6 = \sqrt{6^2 + (-3)^2 + 6^2} \times \sqrt{3^2 + 6^2 + 6^2} \cos A$	M1	allow sign errors and 1 algebraic slip eg omission of power	or $\cos A = \frac{9^2 + 9^2 - (their\sqrt{90})^2}{2 \times 9 \times 9}$	
					$PB = 3\sqrt{10}$	
		$36 = 81\cos A$ or $-36 = 81\cos A$ or better	A1			
		$A = 63.6^{\circ} \text{ or } 1.11 \text{ rad}$	A1	It obtuse angle found, clear explanation needed if acute angle stated as answer	$A = 63.6^{\circ} \text{ or } 1.11 \text{ rad}$	
		eg $AB = \sqrt{3^2 + 6^2 + 6^2}$ and $AP = \sqrt{6^2 + (-3)^2 + 6^2}$ [so isosceles]	B1	NB $AB = 9$ and $AP = 9$ stated is sufficient B0 if answer spoiled	NB 58.2° or $\cos\theta = \frac{\sqrt{10}}{6}$	
			[4]	bo ii unswei sponeu		

Qu	estio	Answer	Marks	Guidance		
10	iii	$\overrightarrow{PD} = \begin{pmatrix} 5+3\lambda \\ 1+6\lambda \\ 9+6\lambda \end{pmatrix} - \begin{pmatrix} 11 \\ -2 \\ 15 \end{pmatrix} \text{ oe}$	M1*		NB $\overrightarrow{PD} = \begin{pmatrix} 3\lambda - 6\\ 3 + 6\lambda\\ 6\lambda - 6 \end{pmatrix}$	
		$(3\lambda - 6)^2 + (3 + 6\lambda)^2 + (6\lambda - 6)^2 = 9^2$ oe	M1dep*	allow one algebraic slip eg omission of one power		
		$\lambda = \frac{8}{9} [\text{ or } 0]$	A1	NB (1)		
		$\left(\frac{23}{3}, \frac{19}{3}, \frac{43}{3}\right)$	A1	$\lambda = \frac{8}{3} \text{ if direction vector is } \begin{pmatrix} 2\\2 \end{pmatrix}$		
		Alternatively	[4]			
		$AD^{2} = 9^{2} + 9^{2} - 2 \times 9 \times 9 \times \cos(180 - 2 \times 63.6)$	M1*	$\mathbf{NB} AD = 8$		
		$(3\lambda)^2 + (6\lambda)^2 + (6\lambda)^2 = \text{their } AD^2 \text{ oe}$	M1dep*			
		$\lambda = \frac{8}{9}$	A1	$\lambda = \frac{8}{3} \text{ if direction vector is} \begin{pmatrix} 1\\2\\2 \end{pmatrix}$		
		$\left(\frac{23}{3},\frac{19}{3},\frac{43}{3}\right)$	A1			
			[4]			

Qu	estio	Answer	Marks	Gu	idance
10	iii	$\overrightarrow{PE} = \begin{pmatrix} 5+3\lambda-11\\ 1+6\lambda2\\ 9+6\lambda-15 \end{pmatrix}$	M1	<i>E</i> is the foot of the perpendicular from <i>P</i> to <i>AB</i>	
		$\overrightarrow{PE} \begin{bmatrix} 1\\2\\2 \end{bmatrix} = 0$	M1		
		$\lambda = \frac{4}{9}$	A1		
		$\left(\frac{23}{3},\frac{19}{3},\frac{43}{3}\right)$	A1	from $\overrightarrow{AD} = 2\overrightarrow{AE}$	
		Alternatively	[4]		
		\overrightarrow{PD} found as above	M1	eg $\begin{pmatrix} 6 \\ -3\lambda \end{pmatrix}$ $\begin{pmatrix} -3\lambda \\ -3\lambda \end{pmatrix}$ $\begin{pmatrix} 6-3\lambda \\ -3\lambda \end{pmatrix}$	or $\begin{pmatrix} -2 \\ -6 \\ -3 \\ -3 \\ -6 \\ -3 \\ -3 \\ -3 \\ -3$
		$\overrightarrow{AP} \overrightarrow{AD} = \overrightarrow{DA} \overrightarrow{DP} \text{ oe}$	M1	$\begin{vmatrix} -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -6 \\ -6 \\ -6 \\$	$(-6)(6-6\lambda)$
		$\lambda = \frac{8}{9}$	A1		$\operatorname{or} \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix} \begin{bmatrix} 3\lambda \\ 6\lambda \\ 6\lambda \end{bmatrix} = 32$
		$\left(\frac{23}{19},\frac{19}{43},\frac{43}{19}\right)$	A1		
			[4]		

4724

Question		Answer	Marks	Gu	idance
11	i	$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 3t^2 - 3$	B 1		
		$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = k\left(2+t\right)^{-\frac{3}{2}}$	M1	k eq 0	
		$\frac{dy}{dx} = \frac{3t^2 - 3}{-\frac{1}{2}(2+t)^{-\frac{3}{2}}}$ oe isw Alternatively	A1 [3]	do not allow bracket errors in marked answer	
		$[y=](x^{-2}-2)^3 - 3x^{-2} + 6$ oe	B1		
		$\left[\frac{dy}{dx}\right] = 3(x^{-2} - 2)^2 \times (-2x^{-3}) + 6x^{-3} \text{ oe}$	M1	allow sign errors and/or one coefficient error	
		$3\left[\left((2+t)^{-\frac{1}{2}}\right)^{-2} - 2\right]^{2} \times -2\left((2+t)^{-\frac{1}{2}}\right)^{-3} + 6\left((2+t)^{-\frac{1}{2}}\right)^{-3}$ oe isw	A1 [3]		

4724

Question		n	Answer	Marks	Guidance	
11	ii		their $\frac{dy}{dx} = 0$	M1	allow eg $3t^2 - 3 = 0$	allow one transcription error
			(1, 2) oe identified as only stationary point	A1	NB $t = -1$	
			eg $t = -0.5, x = \sqrt{\frac{2}{3}}$ and gradient = 8.27	M1	consideration of gradient either side of <i>their</i> $r = 1$	ignore work with other points for the
			eg $t = -1.5, x = \sqrt{2}$ and gradient = -2.65		or consideration of u-values either	
			or eg $t = -0.5$ and $y = 1.375$, $t = -1.5$ and $y = 1.125$		side of their $y = 2$	
			hence maximum value at $(1, 2)$	A1		
			Alternatively, for last two marks			ignore work with other points for the
			evaluation of second derivative at <i>their</i> $t = -1$ or <i>their</i> $x = 1$	M1		last two marks
			$\frac{d^2 y}{dx^2} = -18x^{-4} + 24x^{-8} - 48x^{-6} + 18x^{-4}(x^{-2} - 2)^2$ or oe		second derivative must be obtained from correct method; allow sign errors	
			$6(2+t)^2(7t^2+8t-3)$			
			convincing justification that second derivative < 0 [NB – 24] so maximum	A1		
				[4]		
11	iii		$x \ge \frac{1}{\sqrt{2}}$	B1		
			$-2 < y \le 2$	B1		
				[2]		

472	24
-----	----

Question		n	Answer	Marks	Guidance	
11	iv			B1 [1]	curve with maximum in 1 st quadrant and horizontal asymptote in 4 th quadrant drawn for $x \ge k$, where $k > 0$	